Ethiopia Institute of Technology- Mekelle

Permanent URI for this communityhttps://repository.mu.edu.et/handle/123456789/58

Browse

Search Results

Now showing 1 - 1 of 1
  • Item
    Three-Dimensional Finite Element Analysis of Dowel-Concrete Contact Stresses In JPCP Using Abaqus 6.14.
    (Mekelle University, 2020-09-21) Goytom Gidey Desta
    Jointed Plain Concrete Pavements (JPCPs) are the most common and applicable type of rigid pavement in road and airfields. Yet, it has been very common to see JPCP failed at transverse joint, globally. Study of dowel-concrete contact interface behavior and induced concrete contact stresses at this interface has received significant attention in recent years because of its relevance to overcome transverse joint problem and design effective doweled joints in JPCP. However, most of the previous studies relied on simplifying assumptions that neglected the exact dowel concrete interface behavior. With the above context, this thesis addresses a numerical analysis of contact stresses and strains at dowel-concrete interface and load transfer efficiency (LTE) in JPCP by means of FEM. So as to attain this objective, a nonlinear 3D-FEA was performed using a commercial software package, ABAQUS (6.14). Moreover, theoretical calculations were done based on friberg‟s closed form solution for verification of the FEA result, and a slight difference was achieved. The analysis was made to understand the effect of transverse joint parameters on dowel-concrete contact stresses and LTE. According to the outcome of this thesis, the decreasing of friction value that represents dowel-concrete bonding form 1 to 0.05 resulted decrease in bearing stress and LTE by 0.66% and 0.69%. Also, as the concrete weight increased by 28.57% (from thickness of 250mm to 350mm), the bearing stress decreased by 3.05% and LTE increased by 0.69%, for the 15.78% increase in dowel bar weight, the bearing stress decreased by 12.5% and LTE increased by 2.56%, for the change in joint width form 10mm to 12mm the bearing stress increases with 3.45% and the LTE decrease about 0.86%, for 46.67% increase in axle load, the bearing stress increased by 60.90% and LTE decreased by 5.23%, for 96.5% increase in stiffness of the base course (from 350MPa. to 10,000MPa.) the bearing stress decreased by 60.90% and LTE increased by 7.93%. In addition, for a change in modulus of dowel support from 4.07MPa/m to 6MPa/m, the bearing stress increased by 0.79% and LTE by 1.22%. Form effect of dowel bar misplacement, for the 30mm vertical misplacement a single bar misplacement produced 2.66% higher bearing stress and 0.76% less in LTE than two bars. In general, it can be concluded that a 3D-FEM is a promising approach for modelling JPCPs.