Design and Optimization of Bamboo/Glass Fiber Reinforced Epoxy Composites for Sustainable Wall Panel Application
dc.contributor.author | Tedros Tilahun | |
dc.date.accessioned | 2025-06-24T09:05:20Z | |
dc.date.issued | 2024-11-12 | |
dc.description.abstract | Estimating the angle of arrival (AoA) of a coming signal can accomplished using various methods. In most cases algorithms are used for such purposes. However, algorithms are naturally complicated and expensive, and also cause a degradation in system performance. Therefore, other methods such as, 1800-hybrid rat race (HRR) coupler can be applied for effectively estimating the AOA of a coming signal. In this thesis work, an 1800 HRR coupler integrated with a 2x1 closely-spaced patch antenna array and a negative permeability metamaterial was studied for estimating AoA of a coming signal. The 1800 HRR was made up of a ring metallic sheet integrated with four additional branches placed at the edges of it. It operates at 10 GHz so as to make compatible with the 2x1 patch antenna array’s operating frequency. The simulation results show, the 1800 HRR coupler is characterized by 00- phase at the sum (Σ)-port while 1800 phase shift at the difference (Δ) port at the given operating frequency. In order to integrate with the 1800 HRR, a 2x1 array patch antenna with an inter - element distance of 0.6λ (where λ is the operating wave length) was designed. The antenna array workes at 10GHz with a maximum simulated gain of 8.824 dB while keeping the mutual coupling to a minimum of -23 dB. To further achieving miniaturization, the inter-element distance reduced to 0.4λ. The simulation result shows a resonance at 10 GHz frequency and maximum gain of 7.8 dB while the mutual coupling increased to -9 dB. The 2x1 patch antenna array with inter - element distance of 0.6λ -1800 HRR coupler system was able to estimate the AoA of the received signal from 00 to 190 with error of less than 50. While with a reduced inter – element distance to 0.4λ, the system was able to estimate signals from 00 to 500 with error of less than 50. Upon integrating split ring resonator (SRR) met materials, mutual coupling reduced to -15.6 dB without affecting the AOA of the system. This study was able to estimate AOA in a wide range of an incoming signal while keeping the inter – element distance smaller. The proposed design can be applied in radar system applications where accurate estimation of AOA of an incoming signal is needed such as in target tracking, surveillance, and navigation missions. | |
dc.identifier.uri | https://repository.mu.edu.et/handle/123456789/685 | |
dc.language.iso | en | |
dc.publisher | Mekelle University | |
dc.subject | Angle of Arrival Estimation using Hybrid Rat Race Coupler for Close-Spaced Patch Antenna Array Utilizing SRR Metamaterial Superstrate | |
dc.title | Design and Optimization of Bamboo/Glass Fiber Reinforced Epoxy Composites for Sustainable Wall Panel Application | |
dc.type | Thesis |